Proceedings of the Nineteenth Conference on Innovative Applications of Artificial Intelligence (IAAI-07),
July 22-26, 2007, Vancouver, British Columbia, Canada.

Wings for Pegasus: Creating Large-Scale Scientific Applications

Using Semantic Representations of Computational Workflows

Yolanda Gil, Varun Ratnakar, Ewa Deelman, Gaurang Mehta, Jihie Kim

Information Sciences Institute, University of Southern California
4676 Admiralty Way, Marina del Rey CA 90292, United States
{gil, varunr, deelman, gmehta, jihie } @isi.edu

Abstract

Scientific workflows are being developed for many domains as
a useful paradigm to manage complex scientific computations.
In our work, we are challenged with efficiently generating and
validating workflows that contain large amounts (hundreds to
thousands) of individual computations to be executed over
distributed environments. This paper describes a new approach
to workflow creation that uses semantic representations to
describe compactly complex scientific applications in a data-
independent manner, then automatically generates workflows
of computations for given data sets, and finally maps them to
available computing resources. The semantic representations
are used to automatically generate descriptions for each of the
thousands of new data products. We interleave the creation of
the workflow with its execution, which allows intermediate
execution data products to influence the generation of the
following portions of the workflow. We have implemented this
approach in Wings, a workflow creation system that combines
semantic representations with planning techniques. We have
used Wings to create workflows of thousands of computations,
which are submitted to the Pegasus mapping system for
execution over distributed computing environments. We show
results on an earthquake simulation workflow that was
automatically created with a total number of 24,135 jobs and
that executed for a total of 1.9 CPU years.

Introduction

Scientific workflows are emerging as an effective
paradigm to represent and manage complex scientific
applications [Deelman and Gil 06; Taylor et al. 06].
Scientific communities are increasingly sharing resources
including data repositories, services, instruments, and
computing resources. Workflows provide an effective
representation that captures how these very heterogeneous
resources can be configured and assembled for a wide
variety of purposes, and that facilitates the management of
their execution in such distributed environments. As
sharing of data and resources increases in scientific
communities, the creation and management of workflows
is central to the future of scientific analysis and
computations.

Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Some scientific applications, notably in bioinformatics,
are cast as workflows of Web services in distributed
environments [Oinn et al 06; Ludaescher et al. 06]. Many
other scientific applications do not use workflows
composed of distributed services, but workflows to manage
distributed data and computation resources at large scale.
Instead, they use computational workflows composed of
jobs that perform computations on remote hosts in
distributed environments through remote job submissions.
Computational workflows utilize data that reside in
catalogs that are replicated in the execution environment,
and create data products that need to be stored back in
those repositories. The computations are nodes in the
workflow, and the links in the workflow represent the data
flow among computations. Data is typically available in
files, and each file is described with metadata attributes
that describe its properties (e.g., its creation date, the
instrument used for collection, or the computation that
created it, and other domain-specific attributes). Examples
of workflow systems of this kind are Pegasus [Deelman et
al. 03; Deelman et al. 05; Deelman et al. 06] and Askalon
[Wieczorek 05], and more recently Kepler [Ludaescher et
al. 06] as well.

Creating and validating these computational workflows
is a very challenging enterprise. Some of our prior work
has addressed aspects of this problem through intelligent
workflow editors that assist users in creating valid
workflows [Kim et al 04], using Al planning techniques to
generate workflows by searching through the space of
possible combinations of computations [Blythe et al. 03],
using semantic descriptions of metadata to support the
integration of distributed data repositories [Tuchinda et al
04], and propagating metadata through a workflow using
semantic representations [Kim et al 06; Kim et al 07].
However, in many scientific applications there is a need to
scale up to data sets of thousands of elements. In the
coming years, workflows will continue to grow well into
petascale data set sizes. Providing assistance in creating
and managing these large workflows will be not only
desirable but absolutely necessary.

This paper presents recent work to address the creation
of computational workflows of thousands of components.
Our approach exploits semantic representations of
workflows to express repetitive computational structures in

a compact manner, to describe underspecified data
collections, and to process these representations to create
workflows that can be then mapped to available resources
for execution. We have implemented this approach in
Wings, and integrated it with Pegasus into an end-to-end
workflow creation and execution system. This paper
focuses on the process of creating the workflow, and
describes the semantic representations that we use and the
mechanisms for interleaving workflow creation and
execution that are needed in some applications. Additional
details regarding workflow validation and metadata
propagation that occur during the workflow generation
process are described in [Kim et al 06].

We begin with a detailed motivation showing the scale
and complexity of creating large workflows of
computations. We present our approach and consider
issues of incremental workflow generation. We describe
the implementation in Wings and Pegasus and show results
of generating and running earthquake science workflows in
distributed environments such as the grid.

Motivation: Creating Very Large Scientific
Workflows

In our work, we distinguish three distinct stages in the
creation of workflows [Gil 06]. The first stage is to create
workflow templates, which specify the high-level structure
of the workflow in a data-independent representation. The
second stage is to create workflow instances, which specify
what data is to be used in the computation. Workflow
instances are independent of execution resources, that is,
they can be mapped to any execution environment by
binding tasks to available resources. The third stage is to
create an executable workflow, which specifies the data
replicas to be used and their locations, the hosts where
computation will occur, and the appropriate data
movements across distributed locations. These three stages
enable the management of the complexity of workflow
creation by making the process more modular.

The third stage of creation of executable workflows is
done by Pegasus [Deelman et al. 03; Deelman et al. 05;
Deelman et al. 06]. Pegasus performs automated mapping
of workflows to execution resources and the management
of their execution in distributed grid environments.
Pegasus uses Condor DAGMan [Frey et al 01] as the
workflow execution engine. Pegasus and DAGMan are
now production-quality workflow mapping and execution
engines that are being used in a variety of scientific
applications and manage and execute workflows in small,
medium, and large size grid environments such as the
TeraGrid (www.teragrid.org) and the Open Science Grid
(www.opensciencegrid.org). Pegasus manages the
mapping of workflows of thousands of interrelated
computations whose overall execution often spans weeks.
What Pegasus users are currently lacking are general-

purpose mechanisms to create and validate their very large
workflows.

Many scientific applications require the processing of
dataset elements one at a time with identical computations.
Figure 1 shows an example from our collaboration with the
Southern California Earthquake Center (SCEC) [Maechlin
et al. 05] (left) and an example of a workflow from
statistical natural language processing [Knight and Marcu
04] (right). The first workflow conducts the same kind of
simulation for all ruptures of all faults being considered. It
can be iterated again for several sites. Computation results
are merged in later steps to provide a summary view back
to the scientist. The second workflow reflects the parallel
processing of a large text corpus by breaking it up into
smaller chunks. The results from each chunk are merged
in later steps. Both examples illustrate the regular structure
that appears in many scientific workflows for processing
large data sets. Similar kinds of structures have been
shown in many other domains, such as workflows for
creating image mosaics of astronomical data and for
finding clusters of galaxies in the Sloan Digital Sky Survey
[Taylor et al. 06].

U

Figure 1. Example sketches of scientific workflows with hundreds
or thousands of computations and data products. The figure
illustrates the regular structure of two workflows we have
implemented: an earthquake simulation (left) and a machine
translation application (right).

An on-going problem is that these kinds of workflows
are created using ad-hoc scripts that specify each
individual job, create meaningful identifiers for all new
data products of the workflow, and weave the dataflow
connections among the individual jobs. The iterations
across data sets are managed implicitly in the scripts. If
the workflow needs to be changed, or a new workflow
needs to be created with some of the same components,
new scripts have to be written. This process is not very
practical and is highly prone to errors, and thus it does not
scale well as the workflow size increases. The validation
of the resulting workflow is a challenge, mostly done by
hand. In order to aid validation, there should be for
example a way to specify that two separate collections of
data used as input to a workflow should have the same
cardinality, whatever that cardinality is, in order for the
workflow to be valid.

There are important issues regarding the coupling of the
workflow creation and the workflow execution. Ideally,

the workflow should be completely specified in terms of
the kinds of computations to be performed and the kinds of
data to be created, but be independent of the choice of
hosts and other resources allocated for execution. This
enables reproducibility of results, as well as workflow
reuse. Therefore, it is desirable that the same workflow
instance can be mapped at execution time to the resources
that are available at that time. The Pegasus workflow
mapping engine performs this mapping by binding data
descriptions to one of many possible replicas, selecting
hosts to execute the computations, moving data to where
computation will occur, and moving data products to
appropriate data repositories. If the entire workflow
structure is known ahead of execution, Pegasus can do
reservation and provisioning of resources. For this reason,
it is useful to generate as complete a description as possible
of the anticipated computations and data products before
the workflow is executed.

In summary, our goal is to support the creation and
execution of scientific workflows that process large
collections of data sets and include hundreds or thousands
of computational steps. This requires:

1. Creating workflow descriptions that orchestrate large
amounts of computations appropriately described in
terms of data and computation constraints

2. Handling data sets with many elements and managing
the creation of iterative substructures in the workflow
that process each of those elements

3. Generating appropriate metadata descriptions for all
the new data sets created during execution.

Approach

To support the creation and validation of very large
workflows, we have developed a new approach that uses
semantic representations of workflows and data so that:

* Workflow templates and instances are semantic
objects whose components, data requirements, and
data products are represented in ontologies with
appropriate constraints among them,

* Data collections are specified with intensional
descriptions in workflow templates and fleshed out
to extensional descriptions in workflow instances,
with appropriate relationships as a data set is
concretely specified during the creation of a workflow
instance from a workflow template,

* Intensional descriptions of collections of
computations that offer appropriate abstractions
for the repetitive structure of the workflows at the
template level, and expanded at the instance level once
the data sets are specified extensionally.

There are several important benefits of this approach. It
is easier to manage the complexity of workflow creation,
since many aspects of it can be automated. By making the

description of a workflow template very compact through
intensional descriptions of data sets and computations, it is
easier to create the basic structure of the workflow and
validate it with smaller data sets. By specifying
declaratively data collections and their constraints and
properties we can validate the input data as well as
intermediate data products of the workflow.

Execution requirements influence the representation of
the workflows. First, workflow representations must
support the creation of detailed descriptions of new
workflow data products are required before execution so
the system can detect pre-existing intermediate data and
avoid unnecessary re-computation and optimize execution
performance [Kim et al 06; Kim et al 07]. Second, the
workflow representations must facilitate execution
monitoring and failure recovery. Because many failures
can arise when executing workflow components
(insufficient memory, full file system, code bugs, etc), the
system must manage the recovery from those failures and
figure out what remains to be executed in the workflow.
Workflows that have control constructs such as conditional
branching and iteration are hard to manage because they
require the execution system to have some persistent
representation of their distributed execution state. For
these reasons, the workflows that we have considered in
our work to date are structured as directed acyclic graphs
(DAGs) without control constructs.

The next section describes our current implementation
of this approach and illustrates the main ideas through
examples.

Wings for Pegasus

Wings is a workflow creation system that uses semantic
representation and planning techniques to support the
creation of workflow templates and instances, which are
then submitted to Pegasus to create executable workflows.
Wings and Pegasus provide a comprehensive workflow
creation and execution framework. An overview of the
Wings/Pegasus architecture is shown in Figure 2. Note
that workflow templates and instances can be created by
different users. Experienced scientists can create templates
that comply with widely-accepted analyses that reflect
valid scientific methodologies. Less experienced users can
perform many analyses with different kinds of data by
creating and executing workflow instances. A
Composition Analysis Tool (CAT) assists users during
template creation by checking that the template is valid and
making suggestions based on the constraints and
definitions in the ontologies [Kim et al. 04].

WINGS ~Workfow templates specify

complex analyses sequences
- Workfow instances specify data —_— 4
Workflow Workllow
Seledion i EXPERT
Libraies b |
Orfologies:]
Workfiow PECE — - Spefifes data
Template Comporentyes, :
Workflow Producs Applcation fedurements .
OWL) Camponens - Spegifies executon
“Run that with the
USGS data set” _
Component p
. . P
Spefication

SCENTBT
RESEARCHNG
“Hacsanew NEWMODELS

Wavepropagation mod,
Exeartable\ | DAGMan/ | takeinasais offutrptrs,
Pegasus Worfiow Gid | sematrser

Figure 2. Overview of the Wings/Pegasus Architecture.

In Wings, workflow templates and instances are
semantic objects and so are their components (nodes), the
links among them, and the data generated by workflows.
We use OWL-DL as the representation language, and Jena
as the underlying reasoner. More specifically, we use a
subset of OWL-DL that includes subClassOf,
equivalentClass, and intersectionOf. We use rdf:list to
represent ordered collections of files.

Data is represented as individual files that can be
grouped into file collections. Nested collections are also
supported. All the items within a collection must have a
common type. The core definitions of the file ontology
are:
¢ File: Represents the basic File class.
¢ DataCollection is used to represent a collection of

objects (either files or other collections). These are the

subtypes of DataCollection:

* CollOfDataCollection: A collection of data
collections.

¢ FileCollection: A collection of Files

Computations (codes) are represented as workflow
components. They can process several inputs and several
outputs (each with its own unique id). A given input or
output can take an entire data set. Components are
organized in hierarchies of component types. The core
definitions of the component ontology are:

* ComponentType: This is the top-level class of
component types. A Component is an instance of this
class and corresponds to an actual code that can be
run.

* ComponentCollection: This represents a collection of
components. It uses the property hasComponentType
to specify the type of components in this collection.

ComponentCollection is used in nodes to indicate
iterations over file collections.

Nodes in a workflow represent the component to be
executed. A node in a workflow template can contain a
single component or a component collection. A component
collection is an intensional set of components, and will be
expanded with concrete jobs when workflow instances are
created. The definitions of nodes, and components are as
follows:

* Node: Represents a node in the workflow. Uses a
property hasComponent to specify the component that
the node contains. Its range can be a any subclass of
ComponentType or a ComponentCollection

A link in a workflow template carries data, and the type of
data being carried must be consistent with the output data
type of the origin node and the input data type of the
destination node. Consequently, a link can carry single
files or file collections. Links are defined as follows:

* Link: Represents a generic link in the workflow. It
uses the properties hasDestinationNode and
hasOriginNode to identify the destination and origin
nodes respectively of the link. It also uses the
properties hasDestinationFileDescription and
hasOriginFileDescription to indicate the specific
input/output for the components in the
origin/destination nodes that this link connects. It has
the following subclasses:

o InputLink: These links do not have an origin
node

o InOutLink: These links must have an origin
node and a destination node.

o OutputLink: These links do not have a
destination node.

Workflow templates are defined as including nodes that
can be collections and links that can carry collections as
well. This is done using the property hasFile of a link.
Because we need to assert properties (metadata values) of
these data collections, we need to represent them in the a-
box as instances. Therefore, the data collections carried in
the links are represented with Skolem instances, that is,
instances that stand in for the actual data to be used in the
instance. Properties and constraints can be asserted of
these Skolem instances, which is important to validate the
workflow. This requires that the entire workflow template
is described with instances. Figure 3 shows an example of
a workflow template, which corresponds to the following
description:

<wflns:WorkflowTemplate rdf:ID="WT3">
<wflns:hasLink
rdf:resource="#InputFCSG_to_Cone”/>

<wflns:hasLink

rdf :resource="#InputFCSK_to_Cone”/>
<wflns:hasLink

rdf:resource="#Inout_from_Cone_to_Cmany”/>
<wflns:hasLink

rdf:resource="#InputFSY_to_Cmany”/>
<wflns:hasNode rdf:resource="#Cone"/>
<wflns:hasNode rdf:resource="#Cmany"/>

</wflns:WorkflowTemplate>

<wflns:InputLink rdf:ID="InputFCSG_to_Cone”>
<wflns:hasDestinationNode

rdf:resource="#Cone" />
<wflns:hasDestinationFileDescription

rdf:resource="&clib;#D1" />
<wflns:hasFile><FileCollection

rdf : ID="#FCSG"/></wflns:hasFile>

</wflns:InputLink>

<wflns:InputLink rdf:ID="InputFCSK_to_Cone”>
<wflns:hasDestinationNode

rdf:resource="#Cone" />
<wflns:hasDestinationFileDescription

rdf:resource="&clib;#D2" />
<wflns:hasFile><FileCollection

rdf : ID="#FCSK"”/></wflns:hasFile>

</wflns:InputLink>

<wflns:InOutLink

rdf:ID="Inout_from Cone_to_Cmany"”>
<wflns:hasOriginNode rdf:resource="#Cone"”/>
<wflns:hasDestinationNode

rdf:resource="#Cmany” />
<wflns:hasOriginFileDescription

rdf:resource="&clib;#D3" />
<wflns:hasDestinationFileDescription

rdf:resource="&clib;#DC11"/>
<wflns:hasFile><FileCollection

rdf: ID="#FCSZ"/></wflns:hasFile>

</wflns:InOutLink>

<wflns:InputLink rdf:ID="InputFSY to_Cmany”>
<wflns:hasDestinationNode

rdf:resource="#Cmany" />
<wflns:hasDestinationFileDescription

rdf:resource="#D12"/>
<wflns:hasFile><File

rdf: ID="#FSY"”/></wflns:hasFile>

</wflns:InputLink>

<wflns:Node rdf:ID="Cmany”>
<wflns:hasComponent

rdf:resource="&clib;Cmany” />

</wflns:Node>

<wflns:Node rdf:ID="Cone”>
<wflns:hasComponent>

<clns:ComponentCollection>
<clns:hasComponentType
rdf:resource="&clib;Cone” />
</clns:ComponentCollection>

</wflns:hasComponent>

</wflns:Node>

Note that the number of elements in the collection is not
specified since it is different for every instance to be
created and depends on the size of the data set to be
processed. Other constraints and properties of the set can
be specified at the template level.

Workflow instances are specified by binding the inputs
of a workflow template to specific datasets.

Wings can validate the creation of this instance by the
user. Both collections provided as inputs for links L1 and
L2 must have the same number of elements. They must
also comply with any constraints defined in the template.

Wings takes the descriptions of the input data and
propagates them to create descriptions for all the data

orkflow Template

u
N

<>
D
T

Workflow Instance
@@D@i])@'“

0

LR

*[Cmany |
products of the workflow. For example, the collection in

link L3 in the example is now known to have the same
number of elements as the one in the link L1.

Figure 3. An illustrative example of a workflow template in
Wings, shown on the right. A workflow instance from this
template is shown on the top left. Also shown is a sketch of the
components in the bottom left.

Note that this is an abbreviated specification of a
workflow instance. Wings must then expand it to specify
all the nodes that are to be executed.

Throughout the creation of the workflow instances,
Wings propagates metadata information for all new data
products. The metadata handling aspects of Wings are
described in [Kim et al. 06; Kim et al. 07], showing this
same algorithm in terms of how new metadata is generated
for all new workflow data products.

Pegasus takes a very specific format for workflow
instances. It is called a DAX (Directed Acyclic Graph in
XML), and it is a directed acyclic graph of jobs where each
job consists of code and file names for the inputs and
outputs of the job. It also takes specifications of which
data must be registered, since some intermediate data may
be of temporary utility only but others may be useful to the
user. These are specified as defaults in the workflow
template. Wings generates a workflow in DAX format.
Below is an excerpt of a very small DAX generated by
Wings as an example:

<!-- part 1l: list of all files used -->
<filename file="file.f.a" link="input"/>
<filename file="file.f.bl" link="inout"/>
<filename file="file.f.b2" link="output"/>
<!-- part 2: definition of all jobs (at least
one) -->
<job id="ID000001" name="removeDups"
version="1.0" level="3">

<argument>-a top -T60 -i <filename
file="file.f.a"/> -o <filename
file="file.f.bl"/> </argument>
<uses file="file.f.a" link="input"
dontRegister="false" dontTransfer="false"/>
<uses file="file.f.bl" link="output"”
dontRegister="true" dontTransfer="true"
temporaryHint="true" />
</job>
<job id="ID000002" name="countWords"
version="1.0" level="2">
<argument>-a left -T60 -i <filename
file="file.f.bl"/> -o <filename
file="file.f.b2"/> -p 0.5</argument>
<uses file="file.f.bl" link="input"
dontRegister="false" dontTransfer="false"
temporaryHint="true" />
<uses file="file.f.b2" link="output"”
dontRegister="true" dontTransfer="true"
temporaryHint="true" />
</job>
<!-- part 3: control-flow dependencies (empty for
single jobs) -->
<child ref="ID000002">
<parent ref="ID000001"/>
</child>

We used Wings to create workflows for several
applications including language translation and earthquake
science. The template for the seismic hazard analysis,
which we used to obtain the results reported in the next
section, is shown in Figure 4. This template corresponds to
the structure of the example workflow shown on the left of
Figure 1. From a workflow template consisting of two
dozen component and file types, we created workflow
instances of more than 8,000 nodes that are then mapped
by Pegasus and submitted for execution. This is described
in detail in the results section below.

(T X¥EGRD) ok, memm;n:“\

\
\

Figure 4. A template created in Wings for seismic hazard
analysis in the CyberShake application. Double lines indicate
collections of files or nodes.

Interleaving Workflow Generation and
Execution

The seismic hazard analysis application presented in the
previous section raises an additional and important
challenge. The workflow instance cannot be fully
generated by Wings and then submitted to Pegasus,
because the descriptions of the input data (number of files

in a collection for example) in the latter portions of the
S O

—
=

o v Generated — < 2§ o

2 Data Files — 8 = I

= — g 2 G

== el g ©

AN _ A

workflow are not known until some initial portions of the
workflow have been executed. Thus the workflow
generation and execution processes need to be interleaved.

Figure 5. Interleaving workflow generation and mapping.

Figure 5 illustrates the interactions between Wings,
Pegasus and the underlying execution services. First,
Wings instantiates portions of the template that can be
generated from the metadata available about the initial
data. The resulting partial workflow instance is sent to
Pegasus. Once the mapping is performed, the partial
executable workflow is given to DAGMan for execution.
Wings then uses the actual results and their corresponding
metadata to continue the generation of the rest of the
workflow instance. In the case of the seismic hazard
workflow, two iterations of the workflow instance
generation and mapping are needed.

Results

We show the results of applying our combined
Wings/Pegasus workflow generation and mapping system
for the seismic hazard analysis workflow in Fig 4, called
CyberShake [Deelman et al. 06]. This workflow contains
physics-based simulations that are designed to generate far
more accurate hazard maps than it was ever possible with
previous statistically-based estimates. SCEC scientists are
validating and fine-tuning codes and parameters based on
the results to date. When the validation process is finished,
the refined workflow would be run for each of the
thousands of sites in a seismic hazard map.

Wings creates the initial partial workflow instance for
Pegasus. This partial workflow is small relative to the

whole workflow instance, and can be run on a single local
machine within 11 minutes. The partial workflow consists
of 1 data stage-in job, 5 application domain jobs, 5 data
stage-out jobs and 5 data registration jobs. The data
obtained by running the partial workflow is then kept in a
Wings-accessible location. These new datasets are used by
Wings in creating the remainder of the workflow instance.
The final workflow instance contains all the analysis
required to generate hazard curves for a single site, taking
as input thousands of possible fault ruptures each specified
in an input file for a total of 110,000. Curves from several
hundreds of such sites are required to complete the hazard
analysis for a region by constructing a hazard map.

The second portion of the workflow instance provided
by Wings to Pegasus contains a total of 8043 application
jobs, 3 of the application jobs are parallel codes that use
MPI (Message Passing Interface) for inter-processor
communications and run on hundreds of processors. Two
of these MPI jobs generate the majority of the input data
required for the analysis. This collection of data is a set of
Strain Green Tensors. Sub collections of these tensors are
consumed by 4017 Seismogram processing jobs that do the
bulk of the application analysis to generate individual
seismograms. Following each seismogram step there is a
post-processing job that extracts the peak spectral
acceleration value out of the generated seismogram. The
total time to generate the workflow instance in Wings was
22 mins.

The complete workflow was run on the HPCC (High
Performance Computing & Communications) cluster at
USC, the second fastest in academia with 1,830 dual
processor nodes and 10.75 Teraflops. Not all of the
resources are available in the general queue, so at any
given time the resources available for execution of our
application were never more than 144 nodes.

Pegasus first tries to reduce the workflow if any output
data are already available elsewhere (this did not happen in
this case). The jobs are then mapped to execute on
particular sites, and auxiliary jobs such as data staging
(input as well as output) are added along with output data
registration jobs that register the data products generated
into data repositories.

The executable workflow had a total of 24,135 jobs,
with 15 data stage-in jobs, 8,040 application jobs, 8,040
stage-out jobs and 8,040 data registration jobs. Pegasus
took less than15 minutes to plan this workflow.

The MPI jobs ran on 144 nodes dual processors with
the first MPI job (FD_GRID CVM) which fills a given
mesh with a velocity model taking about 33mins, 36secs.
The two main MPI jobs, pmvl3d]l and pmvl3d2, which
generate the Strain Green Tensors, ran for 25 hours, 30
minutes and 29 hours, 43 minutes respectively.

As seen in Figure 6, the time taken by a single
seismogram job varies widely from a few minutes to a few
days. This is because each seismogram operates on
different amounts as well as different regions of the

dataset. In contrast to this the post processing jobs
(PeakSA jobs) as seen in Figure 7 finish in less than one
minute. The runtime of the entire workflow was
approximately 16562 CPU hours (approximately 1.9 CPU
years).

100000

10000

1000

Hum of Jobs

100

10 40 70 0 13 160 10 20 280 280 30 I FO A0 43 4ED 40 50 G0 IS0 2400 300

Time (mins)

Figure 6. Histogram of the number of seismogram jobs vs. the
time each job took to complete.

10000 -

1000

100

Number of Jobs

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525

Time in miliseconds

Figure 7. Histogram of the number of PeakSA jobs vs the time
each jobs took to complete.

The workflow stopped 7 times and was restarted
successfully each time based on information generated by
Condor DAGMan, our workflow execution engine called
“rescue DAGs”). The workflows stopped due to various
failures including the unavailability/failure of the execution
nodes, exceeding the wall clock time limit on the remote
system by the remote scheduler, and other such typical
failures.

Conclusions

We have described a new approach to creating and
validating very large scientific workflows that process data
sets through computational steps that are executed in
distributed grid environments. Our approach uses semantic
descriptions of workflow templates and workflow
instances where all their constituents are semantic objects
that are described with properties and workflow level
constraints. Once a workflow template is created and
validated by an experienced user, it is easy for more junior

scientists to create sophisticated analyses simply by
specifying input data for pre-defined templates. The
system ensures that the input data specified is appropriate
given the definitions in the workflow template, and
automatically generates a workflow instance that can be
mapped to execution resources. We have implemented this
approach in the Wings system, and it is fully integrated
with the Pegasus workflow mapping and execution system.
We have also addressed the issue of incrementally
generating workflow instances, interleaving workflow
generation with execution. We have demonstrated our
approach on a seismic hazard analysis application,
CyberShake. The workflow took approximately 1.9 CPU
years to execute on high-performance resources.

Augmenting workflows with semantic descriptions has
additional benefits for scientists. They enable searches of
previous workflow instances or templates in cases where a
“similar” analysis is sought. A scientist may want to find
out if someone else has come across a particular problem
or used a particular methodology. The explicit
representations of the workflow templates and instances
also support result reproducibility. Templates provide a
means of systematically and diligently describing the high-
level analytical steps involved. Workflow instances
created from those templates are valid since they follow
established methodology (as described in the template) and
the data complies with the constraints expressed in the
workflow.

Acknowledgements. We gratefully acknowledge our
many collaborators, in particular from the Southern
California Earthquake Center (SCEC) and the Machine
Translation research group at USC’s Information Sciences
Institute. We would also like to thank Marc Spraragen for
his contributions in developing Wings, and Joshua Moody
for insightful comments. This research was funded by a
grant from the National Science Foundation EAR-0122464
and by internal research funds from the Information
Sciences Institute.

References

Blythe, J., Deelman, E., Gil, Y., and C. Kesselman. “Transparent
Grid Computing: A Knowledge-Based Approach”.
Proceedings of the 15th Annual Conference on Innovative
Applications of Artificial Intelligence (IAAI), Acapulco,
Mexico, August 12-14, 2003.

Deelman, E. et al. “ Mapping Abstract Workflows onto Grid
Environments”, Journal of Grid Computing, Vol. 1, No. 1,
2003.

Deelman, E. et al. "Pegasus: a Framework for Mapping Complex
Scientific Workflows onto Distributed Systems". Scientific
Programming Journal, Vol 13(3), 2005.

Deelman, E. et al., "Managing Large-Scale Workflow Execution
from Resource Provisioning to Provenance tracking: The
CyberShake Example," e-Science 2006, Amsterdam,
December 4-6, 2006. Best paper award.

Deelman, E. and Gil, Y. (Eds.) Final Report of the NSF
Workshop on Challenges of Scientific Workflows, National

Science Foundation, Arlington, VA, May 1-2, 2006. At
www.nsf.gov/events/event_summ.jsp?cntn_id=108411&org=IIS.

Frey, J., Tannenbaum, T., Foster, 1., Livny, M., Tuecke, S.,
“Condor-G: A Computation Management Agent for Multi-
Institutional Grids”. In 10th International IEEE Symposium on
High Performance Distributed Computing (HPDC), 2001.

Gil, Y. “Workflow Composition: Semantic Representations for
Flexible Automation”, in “Workflows for e-Science”,
Deelman, E., Gannon, D. Shields, M., and Taylor, 1. (Eds),
Springer Verlag, 2006.

Kim, J., Spraragen, M., and Y. Gil. “An Intelligent Assistant for
Interactive Workflow Composition”, Proceedings of the 2004
International Conference on Intelligent User Interfaces (IUI),
Madeira Islands, Portugal, January 2004.

Kim, J., Gil, Y., and Ratnakar, V. “Semantic Metadata
Generation for Large Scientific Workflows”, Proceedings of
the Fifth International Semantic Web Conference (ISWC-06),
Athens, GA, November 5-9, 2006.

Kim, J., Deelman, E., Gil, Y., Mehta, G., and Ratnakar, V.
“Provenance Trails in the Wings/Pegasus Workflow System”,
Concurrency and Computation: Practice and Experience,
Special Issue on the First Provenance Challenge, 2007.

Knight, K. and D. Marcu. Machine Translation in the Year 2004.
Proceedings of the 2005 IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2005.

Ludischer, B., et al. “Scientific Workflow Management and the
Kepler System”. Concurrency and Computation: Practice and
Experience Special Issue on Workflow in Grid Systems,
August 2006.

Maechling, P. et al. “Simplifying Construction of Complex
Workflows for Non-Expert Users of the Southern California
Earthquake Center Community Modeling Environment”. In
ACM SIGMOD Record, Special issue on Scientific
Workflows, 2005.

Oinn, T. et al. “Taverna: Lessons in creating a workflow
environment for the life sciences”. Concurrency and
Computation: Practice and Experience Special Issue on
Workflow in Grid Systems, August 2006.

Taylor, 1.J.; Deelman, E.; Gannon, D.B.; Shields, M. (Eds.)
Workflows for e-Science: Scientific Workflows for Grids,
Springer Verlag, 2006.

Tuchinda, R., Thakkar, S., Gil, Y. and E. Deelman. "Artemis:
Integrating Scientific Data on the Grid". Proceedings of the
16th Annual Conference on Innovative Applications of
Artificial Intelligence (IAAI), San Jose, CA, July 25-29, 2004.

Wieczorek, M., Prodan, R. and T. Fahringer. “Scheduling of
Scientific Workflows in the ASKALON Grid Environment.”
ACM SIGMOD Record, special issue on Scientific Workflows,
2005.

